Scattering Theory for the Hartree Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data

We consider the defocusing, ˙ H 1-critical Hartree equation for the radial data in all dimensions (n ≥ 5). We show the global well-posedness and scattering results in the energy space. The new ingredient in this paper is that we first take advantage of the term − I |x|≤A|I| 1/2 |u| 2 ∆ 1 |x| dxdt in the localized Morawetz identity to rule out the possibility of energy concentration, instead of ...

متن کامل

Global well-posedness and scattering for the energy-critical, defocusing Hartree equation in R

We obtain global well-posedness, scattering, uniform regularity, and global L t L 6n 3n−8 x spacetime bounds for energy-space solutions to the defocusing energycritical nonlinear Hartree equation in R× R, n ≥ 5.

متن کامل

Global well-posedness and scattering for the mass-critical Hartree equation with radial data

We establish global well-posedness and scattering for solutions to the masscritical nonlinear Hartree equation iut +∆u = ±(|x|−2 ∗ |u|2)u for large spherically symmetric L2x(R ) initial data; in the focusing case we require, of course, that the mass is strictly less than that of the ground state.

متن کامل

[hal-00868782, v1] The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D

We consider the nonlinear Hartree equation for an interacting gas containing infinitely many particles and we investigate the large-time stability of the stationary states of the form f(−∆), describing an homogeneous Fermi gas. Under suitable assumptions on the interaction potential and on the momentum distribution f , we prove that the stationary state is asymptotically stable in dimension 2. ...

متن کامل

Scattering for the focusing Ḣ-critical Hartree equation with radial data

We investigate the focusing Ḣ-critical nonlinear Schrödinger equation (NLS) of Hartree type i∂tu + ∆u = −(| · |−3 ∗ |u|2)u with Ḣ radial data in dimension d = 5. It is proved that if the maximal life-span solution obeys supt ∥|∇| 12 u ∥∥ 2 < √ 6 3 ∥|∇| 12Q ∥∥ 2 , where Q is the positive radial solution to the elliptic equation with nonlocal operator (1.4) which corresponds to a new variational ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Mathematical Analysis

سال: 1998

ISSN: 0036-1410,1095-7154

DOI: 10.1137/s0036141096312222